Home Conteúdo

Derivada

 

História da Derivada

A derivada tem dois aspectos básicos, o geométrico e o computacional. Além disso, as aplicações das derivadas são muitas: a derivada tem muitos papéis importantes na matemática propriamente dita, tem aplicações em física, química, engenharia, tecnologia, ciências, economia e muito mais, e novas aplicações aparecem todos os dias.

A origem da derivada está nos problemas geométricos clássicos de tangência, por exemplo, para determinar uma reta que intersecta uma dada curva em apenas um ponto dado.  Euclides (cerca de 300 a.C.) provou o familiar teorema que diz que a reta tangente a um círculo em qualquer ponto P é perpendicular ao raio em P.  Arquimedes (287--212 a.C.) tinha um procedimento para encontrar a tangente à sua espiral e  Apolônio (cerca de 262--190 a.C.) descreveu métodos, todos um tanto diferentes, para determinar tangentes a parábolas, elipses e hipérboles. Mas estes eram apenas problemas geométricos que foram estudados apenas por seus interesses particulares limitados; os gregos não perceberam nenhuma linha em comum ou qualquer valor nestes teoremas.

Problemas de movimento e velocidade, também básicos para nosso entendimento de derivadas hoje em dia, também surgiram com os gregos antigos, embora estas questões tenham sido originalmente tratadas mais filosoficamente que matematicamente. Os quatro paradoxos de Zenon (cerca de 450 a.C.) se apóiam sobre dificuldades para entender velocidade instantânea sem ter uma noção de derivada. Na Física de Aristóteles (384--322 B.C.), os problemas de movimento estão associados intimamente com noções de continuidade e do infinito (isto é, quantidades infinitamente pequenas e infinitamente grandes). Na época medieval, Thomas Bradwardine (1295--1349) e seus colegas em Merton College, Oxford, fizeram os primeiros esforços para transformar algumas das idéias de Aristóteles sobre movimento em afirmações quantitativas. Em particular, a noção de velocidade instantânea tornou-se mensurável, pelo menos em teoria; hoje, é a derivada (ou a taxa de variação) da distância em relação ao tempo.

Foi Galileu Galilei (1564--1642) quem estabeleceu o princípio que matemática era a ferramenta indispensável para  estudar o movimento e, em geral, ciência: “Filosofia [ciência e natureza] está escrita naquele grande livro o qual está diante de nossos olhos – quero dizer o universo – mas não podemos entendê-lo se não aprendermos primeiro a linguagem... O livro está escrito em linguagem matemática ...” Galileu estudou o movimento geometricamente; usou as proporções clássicas de Euclides e propriedades das cônicas de Apolônio para estabelecer relações entre distância, velocidade e aceleração. Hoje, estas quantidades variáveis são aplicações básicas das derivadas.

O interesse em tangentes a curvas reapareceu no século 17 como uma parte do desenvolvimento da geometria analítica. Uma vez que equações eram então usadas para descrever curvas, o número e variedade de curvas aumentou tremendamente naqueles estudos em épocas clássicas. Por exemplo, Pierre Fermat (1601--1665) foi o primeiro a considerar a idéia de uma família inteira de curvas de uma só vez.  Ele as chamou de parábolas superiores, curvas da forma  y = kxn, onde k é constante e n = 2, 3, 4, … A introdução de símbolos algébricos para estudar a geometria de curvas contribuiu significativamente para o desenvolvimento da derivada, da integral e do cálculo. Por outro lado, como conclusões e resultados geométricos poderiam ser obtidos mais facilmente usando raciocínio algébrico que geométrico, os padrões de rigor lógico que tinham sido iniciados pelos gregos antigos foram relaxados em muitos problemas de cálculo, e isto (entre outros fatores) levou a controvérsias espirituosas e até amarguradas. Fermat desenvolveu um procedimento algébrico para determinar os pontos mais altos (máximos) e mais baixos (mínimos) sobre uma curva; geometricamente, ele estava encontrando os pontos onde a tangente à curva tem inclinação zero.

René Descartes (1596--1650) teve o discernimento de prever a importância da tangente quando, em sua Geometria,  escreveu “E eu ouso dizer isto [encontrar a normal, ou perpendicular a uma curva, a partir da qual podemos facilmente identificar a tangente] não é apenas o problema mais útil e geral da geometria que conheço, mas até aquele que sempre desejei conhecer.” Descartes inventou um procedimento de dupla raiz para encontrar a normal e então a tangente a uma curva. Como resultado da tradução da Geometria de Descartes para o latim por Frans van Schooten (1615--1661) e as explicações abrangentes por Schooten, Florimonde de Beaune (1601--1652) e Johan Hudde (1628-1704), os princípios  e benefícios da geometria analítica tornaram-se mais amplamente conhecidos. Em particular, Hudde simplificou a técnica da dupla raiz de Descartes para determinar pontos máximos e mínimos sobre uma curva; o procedimento da dupla raiz foi redescoberto por Christiaan Huygens (1629-1695). Então, modificando o processo da tangente de Fermat, Huygens inventou uma seqüência de etapas algébricas que produziu os pontos de inflexão de uma curva; veremos que isto requer a derivada segunda. René François de Sluse (1622--1685) desenvolveu uma técnica algébrica que levou à inclinação da tangente a uma curva. No final da década de 1650, havia grande correspondência entre Huygens, Hudde, van Schooten, Sluse e outros sobre tangentes de várias curvas algébricas; Hudde e Sluse especialmente procuraram métodos algébricos mais simples e padronizados que poderiam ser aplicados a uma variedade maior de curvas. Para Gilles Personne de Roberval (1602--1675), uma curva era o caminho de um ponto se movendo, e ele desenvolveu um método mecânico para encontrar a tangente para muitas curvas, incluindo a ciclóide. Mas o método de Roberval não podia ser generalizado para incluir mais curvas.

Isaac Newton (1642--1727) começou a desenvolver o seu “cálculo de flúxions” entre os seus primeiro esforços científicos em 1663. Para Newton, movimento era a “base fundamental” para curvas, tangentes e fenômenos relacionados de cálculo e ele desenvolveu seus flúxions a partir da versão de Hudde do procedimento da dupla raiz. Newton estendeu esta técnica como um método para encontrar a curvatura de uma curva, uma característica que agora sabemos ser uma aplicação da derivada segunda. Em 1666, 1669 e 1671, Newton resumiu e revisou seu trabalho de cálculo e estes manuscritos circularam entre um grande número de seus colegas e amigos. Ainda assim, embora tenha continuado a retornar a problemas de cálculo em épocas diferentes de sua vida científica, os trabalhos de Newton sobre cálculo não foram publicados até 1736 e 1745.

Com algum tutoramento e conselho de Huygens e outros, Gottfried Wilhelm Leibniz (1646--1716) desenvolveu seu cálculo diferencial e integral durante o período entre 1673 e 1676 enquanto vivia como um diplomata em Paris. Em uma pequena viagem a Londres, onde participou de um encontro da Sociedade Real em 1673, Leibniz aprendeu o método de Sluse para encontrar tangentes a curvas algébricas. Leibniz tinha pouca inclinação para desenvolver estas técnicas e interesse ainda menor em fundamentações matemáticas (isto é, limites) necessárias, mas ele aperfeiçoou as fórmulas modernas e a notação para derivada no seu famoso artigo "New methods for maximums and minimums, as well as tangents, which is neither impeded by fractional nor irrational quantities, and a remarkable calculus for them" (Novos métodos para máximos e mínimos, assim como tangentes, os quais não são impedidos por quantidades fracionárias e irracionais, e um cálculo notável para eles) de 1684.

Aqui está o primeiro trabalho publicado em cálculo e de fato a primeira vez que a palavra “cálculo” foi usada em termos modernos. Agora, qualquer um poderia resolver problemas de tangentes sem ser especialista em geometria, alguém poderia simplesmente usar as fórmulas de “cálculo” de Leibniz.

Algumas vezes se diz que Newton e Leibniz “inventaram” o cálculo. Como podemos ver, isto é simplificação exagerada. Em vez disso, como Richard Courant (1888--1972) observou, cálculo tem sido “uma luta intelectual dramática que durou 2500 anos”. Depois de 1700, circunstâncias levaram a um dos episódios mais tristes e deselegantes em toda a história da ciência: a disputa entre Leibniz e Newton, e mais ainda entre seus seguidores, sobre quem deveria receber os créditos do cálculo. Cada um fez contribuições importantes para derivada, integral, séries infinitas e, acima de tudo, para o Teorema Fundamental do Cálculo. As acusações de plágio e outros ataques eram irrelevantes frente à matemática feita por eles, mas as acusações e contra-ataques escalaram para cisões entre matemáticos e cientistas na Inglaterra (leais a Newton) e no continente europeu (seguidores de Leibniz) os quais levaram à xenofobia nacionalista por mais de um século.

O primeiro livro sobre cálculo diferencial foi Analysis of Infinitely Small Quantities for the Understanding of Curved Lines (Análise de quantidades infinitamente pequenas para o entendimento de curvas,1696) pelo Marquês de l’Hospital (1661--1704). Muito de seu trabalho foi realmente devido à Johann Bernoulli (1667--1748) e seguiu o tratamento de Leibniz para derivadas, máximos, mínimos e outras análises de curvas. Mas o método de l’Hospital para determinar o raio de curvatura era muito parecido com aquele de Newton. Jakob Bernoulli (1654-1705) e seu irmão mais novo Johann lideraram o caminho para espalhar o conhecimento do poder das fórmulas de cálculo de Leibniz propondo e resolvendo problemas desafiadores (o problema da catenária e da braquistócrona são dois exemplos) para os quais o cálculo era necessário. Leibniz, Newton e Huygens também resolveram estes problemas. Este problemas e outros levaram ao desenvolvimento das equações diferenciais e do cálculo das variações, novos campos da matemática dependentes de cálculo.

Na Inglaterra, o novo Treatise of Fluxions (Tratado de Flúxions,1737) de Thomas Simpson (1710--1761) forneceu a primeira derivada da função seno. Em 1734, o Bispo George Berkeley (1685--1753) publicou The Analyst (O Analista), um ataque à falta de fundamentos rigorosos para seus flúxions. Berkeley reconheceu a precisão das fórmulas de Newton e a exatidão das suas aplicações abrangentes em física e astronomia, mas criticou as "quantidades infinitamente pequenas" e os "incrementos imperceptíveis" dos fundamentos das derivadas. Colin Maclaurin (1698--1746) tentou defender Newton no seu Treatise of Fluxions (Tratado de Flúxions) (1742) e desenvolveu derivadas para funções logarítmicas e exponenciais e expandiu as fórmulas de Simpson para incluir as derivadas das funções tangente e secante.

No continente, Maria Agnesi (1718--1799) seguiu Leibniz e L'Hospital no seu livro de cálculo Analytical Institutions (Instituições Analíticas,1748). Leonhard Euler (1707--1783) deu um passo importante na direção de estabelecer uma fundamentação sólida para o cálculo no seu Introduction to the Analysis of the Infinite (Introdução à Análise do Infinito, 1748) quando introduziu funções (no lugar de curvas) como os objetos para os quais as derivadas e outras técnicas de cálculo seriam aplicadas. Por função, Euler queria dizer algum tipo de "expressão analítica"; sua concepção não era tão abrangente como a nossa definição moderna. Na sua publicação, também introduziu o termo análise como um nome moderno para cálculo e a matemática avançada relacionada. No seu Methods of Differential Calculus (Métodos de Cálculo Diferencial,1755), Euler definiu a derivada como "o método para determinar as razões entre os incrementos imperceptíveis, as quais as funções recebem, e os incrementos imperceptíveis das quantidades variáveis, das quais elas são funções", que soa não muito científico hoje em dia. Mesmo assim, Euler trabalhou com vários casos especiais da regra da cadeia, introduziu equações diferenciais e tratou máximos e mínimos sem usar quaisquer diagramas ou gráficos. Em 1754, na famosa Encyclopédie francesa, Jean le Rond d'Alembert (1717--1783) afirmou que a "definição mais precisa e elegante possível do cálculo diferencial" é que a derivada é o limite de certas razões quando os numeradores e denominadores se aproximam mais e mais de zero, e que este limite produz certas expressões algébricas que chamamos de derivada.

No final do século 18, Joseph Louis Lagrange (1736--1813) tentou reformar o cálculo e torná-lo mais rigoroso no seu Theory of Analytic Functions (Teoria das Funções Analíticas,1797). Lagrange pretendia dar uma forma puramente algébrica para a derivada, sem recorrer à intuição geométrica, a gráficos ou a diagramas e sem qualquer ajuda dos limites de d'Alembert. Lagrange desenvolveu a principal notação que usamos agora para derivadas e o desenvolvimento lógico de seu cálculo era admirável em outros aspectos, mas seu esforço em prover uma base sólida para o cálculo falhou porque sua concepção da derivada era baseada em certas propriedades de séries infinitas as quais, sabemos agora, não são verdadeiras.

Finalmente, no início do século 19, a definição moderna de derivada foi dada por Augustin Louis Cauchy (1789--1857) em suas aulas para seus alunos de engenharia. Em seu Résumé of Lessons given at l'Ecole Polytechnique in the Infinitesimal Calculus (Resumo das Lições Dadas na Escola Politécnica Sobre o Cálculo Infinitesimal,1823), Cauchy afirmou que a derivada é:

O limite de [f(x + i) - f(x)] / i quando i se aproxima de 0. A forma da função que serve como o limite da razão [f(x + i) - f(x)] / i dependerá da forma da função proposta y = f(x). Para indicar sua dependência, dá-se à nova função o nome de função derivada.

Cauchy prosseguiu para encontrar derivadas de todas as funções elementares e dar a regra da cadeia. De igual importância, Cauchy mostrou que o Teorema do Valor Médio para derivadas, que tinha aparecido no trabalho de Lagrange, era realmente a pedra fundamental para provar vários teoremas básicos do cálculo que foram assumidos como verdadeiros, isto é, descrições de funções crescentes e decrescentes. Derivadas e o cálculo diferencial estão agora estabelecidos como uma parte rigorosa e moderna do cálculo. 

 

Voltar Home Próximo